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Abstract 
 

Mesh deformation in response to redefined or moving aerodynamic surface geometries is a 

frequently encountered task in many applications.  Most existing methods are either 

mathematically too complex or computationally too expensive for usage in practical design and 

optimization.  We propose a simplified mesh deformation method based on linear elastic finite 

element analyses that can be easily implemented by using commercially available structural 

analysis software.  Using a prescribed displacement at the mesh boundaries, a simple structural 

analysis is constructed based on a spatially varying Young’s modulus to move the entire mesh in 

accordance with the surface geometry redefinitions.  A variety of surface movements, such as 

translation, rotation, or incremental surface reshaping that often takes place in an optimization 

procedure, may be handled by the present method.  We describe the numerical formulation and 

implementation using the NASTRAN software in this paper.  The use of commercial software 

bypasses tedious reimplementation and takes advantage of the computational efficiency offered 

by the vendor.  A two-dimensional airfoil mesh and a three-dimensional aircraft mesh were used 

as test cases to demonstrate the effectiveness of the proposed method.  Euler and Navier-Stokes 

calculations were performed for the deformed two-dimensional meshes. 
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I.  Introduction 
 

Most existing deformation methods first deform the boundary mesh, and then try to repair the 

interior mesh by moving, reconnecting, adding, or deleting mesh points.  For unstructured 

meshes with large geometry changes, a new mesh may need to be regenerated.  Botkin1 

introduces a local mesh regeneration procedure that operates only on the specific edges and faces 

associated with the design variable changes.  This technique is suitable for computational 

structural mechanics (CSM) mesh generation.  Similarly, Kodiyalam, Kumar, and Finnigan2 use 

a mesh regeneration technique based on the assumption that the model topology stays fixed for 

small perturbations.  Model topology comprises the number of mesh-points, edges, faces, and the 

connectivity table.  Any change in the mesh topology will cause the model regeneration to fail. 

 

Several techniques can be used to move the interior mesh points.  Gnoffo3 presents an algorithm 

for moving mesh points to resolve various flow features.  The algorithm is based on a spring 

analogy, in which mesh points are connected to each other by a set of springs.  The stiffness for 

these springs is a function of the flow gradients.  Nakahashi and Deiwert4 extend Gnoffo’s 

algorithm by including torsional springs that provide a control for the mesh angles.  Batina5 gives 

a similar mesh deformation algorithm for which the spring stiffness for a given element edge is 

taken to be inversely proportional to the edge length.  Then, the mesh movement is computed 

through the static equilibrium equation.  The spring stiffness is relatively large for small cells.  

Therefore, these small cells, which are usually near the boundary of the body, tend to undergo 

rigid body movement.  This rigid body movement avoids rapid variations in deformation, thus 

eliminating the possibility of small cells having very large changes in volume.  These large 

changes could lead to negative cell volumes.  Blom6 provides a detailed analysis for the spring 

method and draws an analogy between the spring method and an elliptic differential equation 

approach for structured mesh generation. 

 

The spring analogy is simple to implement, but it is not robust.  Several attempts have been made 

to revise the spring formulation to improve the robustness.  Zhang and Belegundu7 present an 

algorithm similar to the spring analogy that can handle large mesh deformation.  They use the 

ratio of the cell Jacobian to the cell volume for the spring stiffness.  Samareh8 augments the 
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spring analogy with quaternions to preserve boundary orientation for structured and unstructured 

viscous-mesh deformations.  The quaternion approach preserves the boundary orientation.  

Because the boundary quaternions are based on changes in the boundary mesh-point positions 

and orientations, the algorithm guarantees that the boundary orientations of the deformed mesh 

have the same quality as those of the undeformed mesh.  Preliminary two-dimensional (2-D) 

results indicate the traditional algorithms such as transfinite interpolation (TFI) and the spring 

analogy can be easily augmented with quaternions to preserve mesh quality near the viscous 

boundary. 

 

Farhat et al.9 propose a modification to the spring analogy algorithm to include an additional 

torsional spring to control mesh skewness and folding for 2-D meshes.  They demonstrate that 

the modified algorithm has advantages in terms of robustness, quality, and performance.  The 2-

D torsional spring is similar to the approach of Nakahashi and Deiwert.4  Murayama, Nakahashi, 

and Matsushima10 present an extension of the spring analogy with a torsional spring for three 

dimensions.  They conclude that the method is simple and robust. 

 

Another class of deformation algorithm is based on modeling the interior mesh deformation δ by 

partial differential equations.  The Laplace equation, 2 0δ∇ = , is the simplest and most widely 

used form.  This algorithm is effective for small deformations.  Crumpton and Giles11 propose a 

formulation based on the heat conduction equation (Laplace) with the coefficient of thermal 

conductivity k inversely proportional to the cell volume; that is, ( ) 0k δ∇ ∇ = .  Crumpton and 

Giles attribute their success to their choice of cell volume used in the criteria for a valid mesh.  

One disadvantage of solving a linear Laplace equation is that the components of the mesh 

deformation are solved independently of each other.  For example, if a boundary is moved only 

along coordinate x, the interior mesh points will be moved only along coordinate x.  This 

behavior limits the use of Laplace deformation techniques. 

 

 The formulation of Ref. 9 has some similarities to linear elasticity formulation.  Tezduyar and 

Behr12 propose an algorithm based on linear elasticity, which includes a full stress tensor.  

Cavallo et al.13 apply this method to mesh deformation for aero and propulsive flow field 

calculations, and use a generalized minimal residual algorithm to solve the linear elasticity 
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equations.  They note that the method preserves the mesh quality, and it produces a better mesh 

than the spring analogy method.  The linear elasticity approach requires solving the complete 

stress tensor.  In contrast, the spring analogy represents only the diagonal elements of the stress 

tensor.  Cavallo et al. conclude that the inclusion of additional stress terms in the linear elasticity 

can tolerate higher degrees of boundary motion, but it is considerably more expensive.  Nielsen 

and Anderson14 use a linear elasticity approach, and their conclusions are similar to those of 

Cavallo et al. 

 

In this paper, we propose a method along the line of a linear elasticity approach.  However, in 

contrast to other approaches, we use two important aspects of the structural analysis.  Firstly, we 

use the spatially varying elastic property as a simple and efficient means to control the mesh 

movement.  Secondly, we take advantage of the commercially available finite-element based 

structural analysis tools.  These well-developed tools make it unnecessary to reimplement the 

finite-element structural analysis.  In the meantime, the computational efficiency offered by the 

software makes the mesh deformation process much more viable for routine usage in a design 

cycle.  We present the numerical formulation, details of implementation, and test cases in the 

following sections. 

 

 

II.  Mesh Deformation Technique 
 

Without loss of generality, we consider a meshed domain V as shown in Fig. 1.  The boundary 

surface S consists of an inner boundary Si and an outer boundary So.  The mesh is expected to 

deform to a new one that has good mesh quality and meets certain displacement requirements 

over the entire boundary (S).  The required boundary displacement may arise during an 

optimization procedure where part of the boundary surface (usually the inner one in aerodynamic 

applications) has to be redefined.  In unsteady aerodynamic applications such as simulation of 

pitching or yawing wings, the inner boundary often moves according to a prescribed unsteady 

motion.  To obtain a deformed mesh, the original mesh is viewed as a finite-element mesh for a 

domain of an isotropic linear elastic material, and the given displacement at each boundary node 

is used as the boundary condition for the elasticity problem.  The desired deformed mesh is thus 
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defined by a numerical solution for the nodal displacement.  Because no “realistic” structural 

response is desired, a linear finite-element analysis suffices. 

 

For the linear elasticity problem of interest, the volume average of the strain tensor depends on 

the displacement specified over the entire boundary, but it is independent of the elastic 

properties.  This fact is obvious from the following derivation: 

 

( ), ,
0 0 0

1 1 1 1 ( )
2 2ij i j j i i j j i

V V S

dv u u dv u n u n ds
V V V

ε = + = +∫ ∫ ∫             (1) 

 

where i = 1, 2, or 3, j = 1, 2, or 3, ui and εij are the Cartesian tensors of displacement and strain, 

respectively, V represents the domain occupied by the elastic continuum, S is the boundary of V, 

ni is the unit vector normal to S, and V0 is the volume of V.  Because the average strain for a 

specific mesh deformation problem is fixed, a significant reduction in strain concentration is 

usually accompanied by a strain increase in major low strain regions. 

 

The mesh deformation is accomplished by two consecutive linear finite-element analyses using 

the original mesh.  The first one is performed with uniform elastic properties to produce a 

baseline solution followed by the second one with non-uniform elastic properties.  The nodal 

displacement resulting from the second analysis defines the desired new location of each node.  

To better control the mesh movement, the Young’s modulus, E, and Poisson’s ratio, ν , of the 

elastic continuum are assumed as follows: 

 

1 ( )E f T= +            (2) 

0ν =                  (3) 

 

where f(T) is a monotonically increasing function of T with f(0) = 0, and T is a spatially varying 

isotropic scalar parameter that satisfies 0 1T≤ ≤ .  The vanishing Poisson’s ratio is intended to 

allow more deformation in low strain regions. 
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For the first round of analysis, T = 0 (consequently, E = 1) is assumed throughout the domain.  

The homogeneity of the material property used for the precursor analysis usually leads to severe 

straining of some elements; the deformed mesh is thus unacceptable.  Nevertheless, the 

deformation serves as a guideline for the determination of the non-uniform T function to be used 

for the second round of analysis.  It appears that T should assume a larger value in a more 

severely strained element so that according to Eqs. 2 and 3, greater stiffness is used for that 

element.  We use the positive definiteness and isotropy of the strain energy density to define T 

for the second analysis as follows: 

 

min

max min

U U
T

U U
−

=
−

      (4) 

 

where U is the strain energy density obtained from the first finite-element solution, and Umax and 

Umin are the maximum and minimum of U over the entire domain, respectively. 

 

Note that there is freedom in choosing f(T).  The simplest functional form is a linear function, 

 

 ( )f T cT=       (5) 

 

with the constant 1 c .  This linear function has been used exclusively and has produced 

quality results in a number of numerical experiments.  Our experience suggests that use of c = 

103 should yield satisfactory results for most cases.  Once T is evaluated by using the solution 

from the first analysis, and a suitable value of c is selected, the second round of analysis can be 

performed to obtain the deformed mesh. 

 

 

III.  Implementation 
 

It is evident that the proposed mesh deformation method may be implemented with a basic linear 

elasticity finite-element code.  In the present investigation, we use the commercially available 

NASTRAN code of the MSC Software Corporation.  The parameter T, defined by Eq. 4, is an 
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element data since the strain energy density U is essentially an element quantity (as opposed to 

nodal quantity such as a displacement) output from the first analysis.  NASTRAN allows use of a 

temperature-dependent linear elastic material whose properties are calculated internally using 

element temperature data.  For the 2-D case, we may take T for temperature because NASTRAN 

accepts element temperature input.  For the three-dimensional (3-D) case, NASTRAN accepts 

only nodal temperature input, computes the average of nodal temperature for each element, and 

uses the average as the element temperature required for the material property calculation.  To 

avoid the error introduced by the conversion from an element quantity to a nodal quantity and 

then back to an element quantity, we do not use the NASTRAN temperature-dependent material 

for the 3-D case.  Instead, the input file for the second analysis is obtained by modifying the 

input file for the first analysis so that in the second input file, each 3-D element refers to an 

element-specific material, whose Young’s modulus is calculated by using Eqs. 2, 4, and 5 

externally, and is written together with the zero Poisson’s ratio (Eq. 3) into the input file. 

 

Implementation of the proposed method for the 2-D case is depicted in Fig. 2.  The two rounds of 

analysis may be performed by using a simple NASTRAN input file with minor modifications.  

As shown, the material model (Eqs. 2, 3 and 5) is defined by merely specifying a few lines in the 

input file.  For the first analysis, the “TEMPERATURE (MATERIAL)” and “INCLUDE” 

commands are commented out.  As a result, E = 1 and 0ν =  are used in the analysis.  The 

element strain energy density (the output generated by the ESE command of the first analysis) is 

then post-processed by using Eq. 4 to create the element temperature data file (named 

temperature.bdf in Fig. 2) according to the NASTRAN input format for 2-D element 

temperature.  By uncommenting the TEMPERATURE (MATERIAL) and INCLUDE commands 

in the input file shown in Fig. 2, the calculated temperature field is employed to compute the 

Young’s modulus element by element during the second analysis. 

 

Implementation of the proposed method for the 3-D case is depicted in Fig. 3.  As seen in Fig. 3, 

homogeneous material properties are used for the first analysis, and each element refers to a 

specific material in the second analysis.  A trivial code, which reads in the element definitions 

from the input file for the first analysis and the element strain energy density from the first 
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analysis results, can generate all the necessary element and material definitions for the second 

analysis. 

 

In a typical computational fluid dynamics (CFD) mesh, the outer boundary is usually an 

artificially created free-stream boundary.  During the mesh deformation process, this boundary is 

often held fixed.  Therefore, for all our results presented herein, we assume a zero displacement 

at the outer boundary.  On the other hand, a displacement is prescribed at each node on the inner 

boundary (e.g., airfoil surface) in order to produce a specific deformation of the mesh. 

 

As mentioned before, we need to determine the parameter c.  Judging from the high strain 

concentration that is expected to be captured by the fine mesh around the theoretical singularity, 

we started with c = 103 for all the numerical examples, and obtained consistently good results.  

Subsequently, c = 104 was used, and even better deformed meshes were achieved.  Finally, c = 

105 was tested; however, we observed very little improvement from using this value.  Therefore, 

all the results presented herein were generated with c = 104. 

 

 

IV.  2-D Test Cases 
 

The chosen 2-D mesh is intended for a transonic flow over an airfoil.  The baseline mesh is an 

unstructured mesh for a 2-D airfoil with triangular elements as shown in Fig. 4.  The mesh has a 

total of 18812 elements and 9598 nodes with many of them clustering near the airfoil surface.  

The chord of the airfoil is parallel with the x-axis and has a length of 1 unit.  To demonstrate the 

effectiveness of the present method, we attempt to deform the mesh in four different ways: 1) by 

a translation of the airfoil by 0.5 unit in the flow (x) direction, 2) by a 0.5-unit upward (y) 

translation, 3) by a 45° rotation, and 4) by cambering the airfoil shape via imposing an arc-

shaped distribution of upward (y) displacement (zero at both leading and trailing edges, and a 

peak displacement of 0.125 unit at the mid-chord position).  The camber movement is often 

encountered in a design optimization process, while the rigid-body motion cases may appear in 

both design optimization and unsteady aerodynamic analysis.  Each NASTRAN run took about 
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13 seconds on a computer with an Intel Pentium III 930 MHz processor and the Linux operating 

system. 

 

Figures 5-8 show the mesh patterns resulting from the first stage finite-element analysis for the 

above four target deformation cases, respectively.  The uniform elastic property is employed at 

this stage, and the resulting mesh is of very poor quality.  It appears that the near-wall mesh 

points have been dragged along with the airfoil motion.  In particular, “overspill” (non-unique 

mapping) occurs at the trailing edge for all the cases.  Furthermore, the near-wall elements lose 

the quasi-orthogonality of the baseline mesh.  These poor-quality meshes are a natural 

consequence of the imposed large displacement within the framework of linear elasticity theory. 

 

The final meshes resulting from the second stage finite-element analysis for the four deformation 

cases are presented in Figs. 9-12, respectively.  Evidently, the artificial temperature field created 

in the present analyses along with the varying elastic properties has made the problem well 

posed.  The leading and trailing edges appear to be problem-free, and no overspill is observed in 

the results.  For the two translation cases, the orthogonality of the near-wall mesh is almost 

completely preserved.  For the other two cases, the near-wall mesh, although less orthogonal 

than for the translation cases, still has good quality.  The variable elastic property plays a crucial 

role in achieving the desirable mesh deformation.  The impact of the property variation can be 

visualized by comparing Fig. 7a (ill-formed mesh) with Fig. 11a (final mesh).  It is seen from the 

comparison that the deformation is successfully propagated toward the low strain regions.  A 

consequence of the propagation is the dramatic reduction in strain concentration, as indicated by 

Figs. 7b and 11b. 

 

 

V.  2-D Euler & Navier-Stokes Computations Using the Deformed Meshes 
 

To validate the proposed mesh deformation technique, we solved Euler and Navier-Stokes 

equations over the original as well as the deformed meshes.  All calculations presented here were 

performed by using a space-time CE/SE method.15  Figure 13 shows the resulting non-

dimensional pressure contours over the horizontally translated mesh (Fig. 9) with a free-stream 
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Mach number of 0.8.  A similar calculation was performed for the rotated mesh (Fig. 11) with 

the same free-stream Mach number but at a 45° free-stream incident angle to facilitate 

comparisons with the translated case.  The resulting pressure contours shown in Fig. 14 resemble 

those of the translated case in Fig. 13.  Figure 15 shows the airfoil surface pressure distribution 

for the above two cases along with that generated with the baseline mesh (Fig. 4).  Except for the 

small difference after the shock, the three solutions fall almost on top of one another.  It should 

be noted that the shock solution is usually more sensitive to mesh resolution due to the limiters 

applied to resolve the discontinuities.  Also note that we use the mesh index instead of the x 

coordinate as the abscissa in the figure because all the three cases share an identical mesh index.  

In fact, connectivity and other mesh-related information is preserved in the present mesh 

deformation method.  This property has positive implications in many CFD applications.  For 

example, the calculation of sensitivity derivatives in an optimization procedure can be simplified.  

For the above calculations, the same mesh identity makes it possible to import the converged 

solution from the original mesh as the initial condition of the deformed mesh directly without 

any index manipulation.  A good initial condition on the deformed mesh eliminates the nonlinear 

transient effect and substantially speeds up the convergence to steady state. 

 

A Navier-Stokes calculation was also performed by using the cambered mesh with a free-stream 

Mach number of 0.8 and a chord Reynolds number of 104.  The resulting Mach number contours 

are shown in Fig. 16.  Due to strong separation associated with the cambered geometry, a steady-

state solution is not possible at this Reynolds number.  The solution indicates that vortex 

shedding is about to form, and a moving shock at the bottom surface is also evident.  However, 

the relatively coarse mesh in the wake region prevents these dynamic flow features from being 

resolved.  This camber case also shows that the present mesh deformation approach may be used 

for mesh generation for a derived airfoil shape (such as a camber) based on an existing, easily 

generated mesh. 

 

 

VI.  3-D Test Case 
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The chosen 3-D mesh is an unstructured mesh created by Frink16 for a transonic flow passing a 

transport aircraft.  As shown in Fig. 17, the discretized domain for the CFD computation is an 

orthogonal hexahedron.  For explanatory purposes, the high-density surface mesh of the aircraft 

and a local rectangular coordinate system embedded in the left wing are exposed to the reader 

through a truncation of the hexahedron.  In the 3-D test, the mesh is deformed by rotating the 

outboard portion of the wing upward about the z-axis of the local coordinate system.  The 

resulting wing tip rise (Fig. 18) is about half the wing tip chord, similar to the 2-D test case 

reported with Figs. 6 and 10.  As seen in Fig. 17, a cutout of the CFD mesh is selected to 

accommodate the deformation.  Therefore, the proposed mesh deformation method is applied to 

the cutout, which has 855,727 tetrahedral elements and 150,028 nodes.  Each of the two 

NASTRAN runs took about two hours and fifty minutes on a computer with an Intel Xeon 3.06 

GHz CPU, 3 GB RAM, and the Linux operating system. 

 

The first layer of elements attached to the wing surface is examined in Fig. 19.  A comparison of 

Fig. 19a and Fig. 19b indicates the presence of overspill at the tip and edges of the wing from the 

first analysis.  In fact, the penetration propagates over about half the rotated portion of the 

trailing edge.  In contrast, no penetration results from the second analysis (Fig. 19c).  The 

deformed geometry of the fifth layer of elements outside the wing surface is compared with the 

undeformed in Fig. 20.  The penetration is still evident in Fig. 20a, although the extent is 

reduced.  A further examination indicates that the penetration propagates through more than ten 

layers of elements near the trailing edge point of the wing tip. 

 

The quality of the deformed meshes must be examined by inspecting some critical cross sections.  

The two cross sections shown in Figs. 21a and 22a are inspected.  Caution should be taken when 

inspecting the cross sections because the two cross sections, each consisting of many element 

faces, are not flat.  Although only the close-ups of the trailing edge (Fig. 21f) and wing tip (Fig. 

22f) are given herein, the quality of the mesh deformed by the second analysis is consistently 

satisfactory over the entire cross section, and the quality is comparable with that observed in Fig. 

10 for the 2-D case.  In contrast, the mesh from the first analysis only reflects the information 

guiding the material property correction. 
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VII.  Concluding Remarks 
 

A simplified mesh deformation method based on a commercial structural analysis tool is 

proposed.  The present approach requires two consecutive linear elastic finite-element analyses, 

the first one with homogeneous material properties and the second one with inhomogeneous 

material properties.  The element strain energy density output from the first analysis is used to 

compute the element-specific Young’s modulus in a very simple manner for the second analysis.  

The proposed two-stage structural analysis may be accomplished via simple NASTRAN input 

files.  Several surface movements such as translation, rotation, and cambering have been 

investigated using the proposed approach.  Consistently good quality of the deformed meshes is 

verified by visual inspection in details.  The quality of the 2-D deformed mesh is further 

validated by Euler and Navier-Stokes calculations.  One distinct feature of the present approach 

is that the mesh connectivity and indices are completely preserved during the deformation 

process.  This property can greatly simplify the sensitivity calculation required in an optimization 

process. 

 

The present method also could be used as a dynamic mesh generation tool for a series of 

unsteady moving-boundary CFD calculations.  The main advantage is that the present method 

allows a fixed outer boundary with a preserved mesh connectivity that in many cases may 

simplify the numerical solution procedure. 
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Figure 1: Schematic illustration of linear elasticity problem with displacement-type boundary 
conditions. 
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Figure 2: NASTRAN input file used for 2-D case. 

$*********************************************** 
$**Comment Out "TEMPERATURE(MATERIAL)" AND "INCLUDE" for 1st Round 
$**of Analysis, Activate Them for 2nd Round 
$*********************************************** 
SOL 101 
CEND 
TITLE = 0.5-Unit Translation of 2-D Airfoil in Flow Direction 
ECHO = NONE 
SUBCASE 1 
SPC = 2 
LOAD = 1 
$ Temperature for 2nd Round of Analysis 
$TEMPERATURE(MATERIAL) = 2 
$ ESE Output Does Not Have to Be Requested by 2nd Analysis 
ESE=ALL 
DISPLACEMENT(SORT1,REAL)=ALL 
BEGIN BULK 
PARAM    POST    0 
PARAM    TINY    0. 
$*********************************************** 
$**Temperature Dependent Isotropic Linear Elastic Material 
MAT1     1       1.              0.                      0. 
MATT1    1       1 
$ Temperature Dependent Material Table : E = 1 + 10000.*T 
TABLEM1  1 
0.      1.      1.      10001.  ENDT 
$*********************************************** 
$**Temperature for 2nd Round of Analysis 
$INCLUDE 'temperature.bdf' 
$*********************************************** 
$**Elements and Element Properties 
PSHELL   1       1       1.      1               1 
CTRIA3   1       1       1       49      50 
. 
. 
$*********************************************** 
$**Nodes 
GRID*    1                               1.00006         2.85-4 
*        0. 
. 
. 
$*********************************************** 
$**Displacement Boundary Conditions 
SPCADD   2       1       3 
$ Dummy Force Required to Enforce Nonzero Displacements 
FORCE    1       1               0.      1.      1.      1. 
$ Enforced Displacements: 0.5-Unit Translation in Flow Direction 
SPCD     1       1       1       .5      49      1       .5 
SPCD     1       99      1       .5      149     1       .5 
. 
. 
SPC1     1       123     1       49      99      149     199     249 
. 
. 
$ Enforced Displacements: Fixed Remote Boundary Nodes 
SPC1     3       123     48      98      148     198     248     298 
348     398     448     498     548     598     648     698 
. 
. 
ENDDATA 
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Figure 3: NASTRAN input files used for 3-D case. 

SOL 101 
CEND 
TITLE = 3-D Example, 1st Round of Analysis 
ECHO = NONE 
SUBCASE 1 
SPC = 2 
LOAD = 1 
$ ESE Output Does Not Have to Be Requested by 2nd Analysis 
ESE=ALL 
DISPLACEMENT(SORT1,REAL)=ALL 
BEGIN BULK 
PARAM    POST    0 
PARAM    TINY    0. 
$*********************************************** 
$**Elements and Element Properties 
PSOLID   1       1       0 
MAT1     1       1.              0.0                     0.0 
CTETRA   1       1       5592    4966    5768    16709 
CTETRA   2       1       5592    4966    16709   16707 
CTETRA   3       1       16707   4966    16709   16708 
  . 
  . 
$*********************************************** 
$**Nodes 
  . 
  . 
$*********************************************** 
$**Displacement Boundary Conditions 
                . 
                . 
$*********************************************** 
$**Referenced Coordinate Frames 
CORD2R*  1                               181.893        -233.728 
*        19.8596        -114.937        -233.728         19.8596 
*        181.893        -530.557         19.8596 
* 
ENDDATA 
 
 
 
---------------------------------------------------------------- 
SOL 101 
CEND 
TITLE = 3-D Example, 2nd Round of Analysis 
                . 
                . 
$*********************************************** 
$**Elements and Element Properties 
PSOLID   1       1       0 
MAT1     1       15.0            0.0                     0.0 
CTETRA   1       1       5592    4966    5768    16709 
PSOLID   2       2       0 
MAT1     2       14.1            0.0                     0.0 
CTETRA   2       2       5592    4966    16709   16707 
PSOLID   3       3       0 
MAT1     3       15.7            0.0                     0.0 
CTETRA   3       3       16707   4966    16709   16708 
  . 
  . 
ENDDATA 
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Figure 4: Two-dimensional CFD mesh prior to deformation. 
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Figure 5: Mesh deformed by 0.5-unit translation of airfoil in flow (x) direction, resulting from 
first analysis. 
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Figure 6: Mesh deformed by 0.5-unit upward (y) translation of airfoil, resulting from first 
analysis. 
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Figure 7: Mesh deformed by 45° rotation of airfoil, resulting from first analysis. 
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Figure 8: Mesh deformed by imposing arc-shaped distribution of upward (y) displacement on 
entire airfoil surface, resulting from first analysis. 
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Figure 9: Mesh deformed by 0.5-unit translation of airfoil in flow (x) direction, resulting from 
second analysis. 
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Figure 10: Mesh deformed by 0.5-unit upward (y) translation of airfoil, resulting from second 
analysis. 

a

b c

d e



 25

 
 

  
 

  
 
Figure 11: Mesh deformed by 45° rotation of airfoil, resulting from second analysis. 
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Figure 12: Mesh deformed by imposing arc-shaped distribution of upward (y) displacement on 
entire airfoil surface, resulting from second analysis. 
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Figure 13: Euler pressure contours computed by using mesh translated in x direction. 
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Figure 14: Euler pressure contours computed by using rotated mesh. 
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Figure 15: Comparison of non-dimensional wall pressure among three different meshes. 
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Figure 16: Navier-Stokes Mach number contours computed by using cambered mesh. 
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Figure 17: Complete 3-D CFD mesh and cutout portion to be deformed. 
 
 

 
 
Figure 18: Outboard portion of wing rotated upward. 
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Figure 19: Examining first layer of elements.  (Fig. 19a: Mesh prior to deformation.  Fig. 19b: 
Mesh from first analysis.  Fig. 19c: Mesh from second analysis.) 
 
 

  
 
Figure 20: Examining fifth layer of elements.  (Fig. 20a: Mesh from first analysis.  Fig. 20b: 
Mesh from second analysis.) 
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Figure 21: Examining ten layers of elements near wing tip.  (Fig. 21a: Region examined defined 
by cross section view AA.  Fig. 21b: Mesh around trailing edge prior to deformation.  Fig. 21c: 
Mesh from first analysis.  Fig. 21d: Mesh around trailing edge from first analysis.  Fig. 21e: 
Mesh from second analysis.  Fig. 21f: Mesh around trailing edge from second analysis.) 
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Figure 22: Examining ten layers of elements near trailing edge.  (Fig. 22a: Region examined 
defined by cross section view AA.  Fig. 22b: Mesh around wing tip prior to deformation.  Fig. 
22c: Mesh from first analysis.  Fig. 22d: Mesh around wing tip from first analysis.  Fig. 22e: 
Mesh from second analysis.  Fig. 22f: Mesh around wing tip from second analysis.) 
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